On the largest eigenvalue of non-regular graphs
نویسندگان
چکیده
We study the spectral radius of connected non-regular graphs. Let λ1(n,Δ) be the maximum spectral radius among all connected non-regular graphs with n vertices and maximum degree Δ. We prove that Δ− λ1(n,Δ)=Θ(Δ/n). This improves two recent results by Stevanović and Zhang, respectively. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
On the limit points of the smallest eigenvalues of regular graphs
In this paper, we give infinitely many examples of (non-isomorphic) connected k-regular graphs with smallest eigenvalue in half open interval [−1− √ 2,−2) and also infinitely many examples of (non-isomorphic) connected k-regular graphs with smallest eigenvalue in half open interval [α1,−1− √ 2) where α1 is the smallest root(≈ −2.4812) of the polynomial x3 + 2x2 − 2x − 2. From these results, we ...
متن کاملA note on the largest eigenvalue of non-regular graphs
The spectral radius of connected non-regular graphs is considered. Let λ1 be the largest eigenvalue of the adjacency matrix of a graph G on n vertices with maximum degree ∆. By studying the λ1-extremal graphs, it is proved that if G is non-regular and connected, then ∆− λ1 > ∆+ 1 n(3n+∆− 8) . This improves the recent results by B.L. Liu et al. AMS subject classifications. 05C50, 15A48.
متن کاملThe Distribution of the Largest Nontrivial Eigenvalues in Families of Random Regular Graphs
Recently Friedman proved Alon’s conjecture for many families of d-regular graphs, namely that given any 2 > 0 “most” graphs have their largest non-trivial eigenvalue at most 2 √ d− 1+ 2 in absolute value; if the absolute value of the largest non-trivial eigenvalue is at most 2 √ d− 1 then the graph is said to be Ramanujan. These graphs have important applications in communication network theory...
متن کاملThe smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters
We prove a conjecture by Van Dam & Sotirov on the smallest eigenvalue of (distance-j) Hamming graphs and a conjecture by Karloff on the smallest eigenvalue of (distance-j) Johnson graphs. More generally, we study the smallest eigenvalue and the second largest eigenvalue in absolute value of the graphs of the relations of classical P and Q-polynomial association schemes.
متن کاملLarge regular graphs with given valency and second eigenvalue
From Alon and Boppana, and Serre, we know that for any given integer k ≥ 3 and real number λ < 2 √ k − 1, there are finitely many k-regular graphs whose second largest eigenvalue is at most λ. In this paper, we investigate the largest number of vertices of such graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 97 شماره
صفحات -
تاریخ انتشار 2007